The Cartesian Path Planning of Free- Floating Space Robot using Particle Swarm Optimization
نویسندگان
چکیده
The Cartesian path planning of free-floating space robot is much more complex than that of fixed-based manipulators, since the end-effector pose (position and orientation) is path dependent, and the position-level kinematic equations can not be used to determine the joint angles. In this paper, a method based on particle swarm optimization (PSO) is proposed to solve this problem. Firstly, we parameterize the joint trajectory using polynomial functions, and then normalize the parameterized trajectory. Secondly, the Cartesian path planning is transformed to an optimization problem by integrating the differential kinematic equations. The object function is defined according to the accuracy requirement, and it is the function of the parameters to be defined. Finally, we use the Particle Swarm Optimization (PSO) algorithm to search the unknown parameters. The approach has the following traits: 1) The limits on joint angles, rates and accelerations are included in the planning algorithm; 2) There exist not any kinematic and dynamic singularities, since only the direct kinematic equations are used; 3) The attitude singularities do not exist, for the orientation is represented by quaternion; 4) The optimization algorithm is not affected by the initial parameters. Simulation results verify the proposed method.
منابع مشابه
Study of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning
Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...
متن کاملOptimal Motion Planning of a Space Robot with Base Disturbance Minimization
The base attitude of a free floating space robot may change while performing a motion with its manipulator. This dynamic coupling complicates the motion planning of the space robot and must be taken into account in order to reach a target point with a desired end-effector pose. However, the free floating mode is useful, because of its energy efficiency, and with proper motion planning, its adeq...
متن کاملMobile Robot Path Planning in Static Environments using Particle Swarm Optimization
Motion planning is a key element of robotics since it empowers a robot to navigate autonomously. Particle Swarm Optimization is a simple, yet a very powerful optimization technique which has been effectively used in many complex multi-dimensional optimization problems. This paper proposes a path planning algorithm based on particle swarm optimization for computing a shortest collision-free path...
متن کاملRobot Path Planning Based on Random Coding Particle Swarm Optimization
Mobile robot navigation is to find an optimal path to guide the movement of the robot, so path planning is guaranteed to find a feasible optimal path. However, the path planning problem must be solve two problems, i.e., the path must be kept away from obstacles or avoid the collision with obstacles and the length of path should be minimized. In this paper, a path planning algorithm based on ran...
متن کاملPSO-Based Path Planning Algorithm for Humanoid Robots Considering Safety
In this paper we introduce an improvement in the path planning algorithm for the humanoid soccer playing robot which uses Ferguson splines and PSO (Particle Swarm Optimization). The objective of the algorithm is to find a path through other playing robots to the ball, which should be as short as possible and also safe enough. Ferguson splines create preliminary paths using random generated para...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008